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Abstract-The paper presents a finite-difference scheme to solve the transient laminar forced convection 
problem in the entry region of a concentric annulus with sumultaneously developing hydrodynamic and 
thermal boundary layers. Four initial conditions are considered for the creation of thermal transients. 
These correspond to either a step change in temperature at one of the annulus boundaries or to a 
simultaneous step change in temperature at both the inlet cross-section and one of the annulus boundaries, 
the other annulus boundary is kept adiabatic in all cases. Numerical results are presented for a fluid of 

Pr = 0.7 in an annulus of radius ratio 0.5. 

INTRODUCTION 

TRANSIENT forced convection heat transfer in channels 
is of great importance in connection with the design 

of control systems for modern heat exchanger devices. 
Other important applications which require the evalu- 
ation of the performance of thermal equipment in the 
unsteady forced convection regime include processes 
such as, start-up, shut-down, power-surge, pump-fail- 
ure accidents, etc. Such processes have stimulated 
investigations to determine the transient thermal 
response of channel flows to step changes in thermal 
or hydrodynamic boundary conditions. On the other 
hand, regenerative type heat exchangers, through 
which hot and cold fluids pass in succession, moti- 
vated the study of periodic thermal response of chan- 
nel flows to imposed cyclic variation in boundary 
conditions. 

In spite of the importance of transient forced con- 
vection, literature on the subject is generally limited. 
A review of the literature reveals that only two geo- 
metries have been considered in the research works on 
transient laminar forced convection, namely, parallel- 
plate channels and circular tubes. 

Early investigations [l-3] assumed the fluid tem- 
perature and velocity to be uniform across the flow 
cross-section. Rizika [l] analyzed the transient 
response of a steady compressible fluid flow through 
an insulated pipe subject to a step or exponential 

ton leave from Alazhar University, Nasr City, Cairo, 
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change in inlet fluid temperature. Dusinberre [2] pre- 
sented an explicit finite-difference method for com- 
puting transient temperature profiles in pipes and heat 
exchangers. Rizika [3] considered incompressible fluid 
flows in a pipe and in a simple heat exchanger with a 
step variation in inlet fluid temperature. 

Few investigators [4-71 considered cases of un- 
steady heat transfer with fluid velocities varying 
with time. Perlmutter and Siegel [4,5] presented ana- 
lytical solutions for transient heat transfer processes 
caused by simultaneously changing the fluid pumping 
pressure and either the wall temperature or the wall 
heat flux in parallel-plate channels. In refs. [5,6] the 
fluid velocity is assumed constant over the channel 
cross-section (slug-flow), but can vary with time. 
Yang and Ou [7] considered the hydrodynamically 
developing flow in tubes and parallel-plate channels 
with the unsteady forced convection engendered by 
arbitrary time-dependent inlet velocity. 

Other invstigators [8-201 allowed for the variation 
of fluid temperature across the flow cross-section but 
with velocity distributions which do not change with 
time. Either slug or fully developed velocity distri- 
butions were assumed in such investigations. Sparrow 

and. Siegel [8] used the method of characteristics to 

determine the thermal response to a step change in 
wall temperature or wall heat flux for laminar fully 
developed (Poiseuille) flow in the thermal entrance 
region of a pipe. Their solution could be generalized 
to apply for arbitrary time variations by means of 
superposition techniques. Transient laminar heat 
transfer in the thermal entrance region of a parallel- 
plate channel subject to a step change in wall tem- 
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NOMENCLATURE 

specific heat of fluid at constant pressure 
number of time increments in the 
numerical mesh network 
number of axial increments in the 
numerical mesh network 
number of radial increments in the 
numerical mesh network 

annulus radius ratio, r Jr z 
pressure of fluid at any point 
dimensionless pressure, p/( pui) 
pressure of fluid at annulus entrance 

Prandtl number, v/a 
local heat flux at the wall, -~(aTjaR),,. 
dimensionless wall heat flux, (MjaR), 
total heat absorbed by fluid from 
entrance cross-section until a point 

under consideration, 

27-c&, J-i; ru( T,,, - T,,) dr 

dimensionless heat absorbed by fluid, 

q,/[u,npC,r:(Tw,- To)] = 2s.: RU0 dR 
radial coordinate 
heated wall radius 
inner radius of the annulus 
outer radius of the annulus 

dimensionless radial coordinate, r/r* 
Reynolds number, 2przuo(l - N)/p 

time 
temperature 
fluid temperature at annulus entrance 
adiabatic wall temperature 

T,,, 

TW 
l4 

ii 

UO 

u 
u nlan 

V 
V 
z 
z 

mixing cup temperature over any cross- 
section, s:r urT dr/s:; ur dr 

heated wall temperature 
axial velocity 
average axial velocity 
axial velocity at annulus entrance, u,, = U 
dimensionless axial velocity, u/u,, 
maximum dimensionless axial velocity 

component 
radial velocity 
dimensionless radial velocity, r,v/v 

axial coordinate 
dimensionless axial coordinate, 
2( 1 - N)z/r: Rr. 

Greek symbols 
c( fluid thermal diffusivity, rc/pC, 

0 dimensionless temperature at any point, 

(T- T,)I(T, - 7-0) 
0 ad dimensionless adiabatic wall 

temperature, (Tad - T,)/( T, - T,) 

0, dimensionless mixing cup temperature, 

(T,- To)I(T,-- T,) = 
j; RUO dR/J,: RUdR 

K thermal conductivity of the fluid 

p dynamic fluid viscosity 
V kinematic fluid viscosity, p/p 

P fluid density 
z dimensionless time, vt/r *. 

perature or in wall heat flux was investigated by Siegel 
and Sparrow [9]. They employed the method of 
characteristics to solve an integral form of the energy 
equation with a fully developed velocity profile. Com- 
bining a transient heat conduction solution and a 
steady convection solution, Siegel [lo] obtained a 
solution for transient heat transfer resulting from a 
step change in wall heat flux for laminar slug-flow in 
parallel-plate channels. Assuming fluid velocity dis- 

tribution is fully developed and unchanging with time, 
Siegel [l l] dealt with the problem of transient heat 
transfer in circular tubes or parallel-plate channels 
whose walls undergo a step change in temperature. 
With a uniform fluid velocity (slug-flow condition) 
throughout a parallel-plate channel, Siegel [ 121 found 
that the heat capacity of the plates has a very sub- 
stantial effect in reducing the time response of the 
surface temperatures. 

By means of a double Laplace transform technique, 
Hudson and Bankoff [13] obtained asymptotic solu- 
tions for heat transfer to a Poiseuille flow in a tube 
under transient conditions resulting from a step 

increase in wall temperature. The same technique was 
used by Chu and Bankoff [14] to investigate the effect 
of axial conduction on unsteady heat transfer to slug- 
flow in pipes. Their results showed that this effect is 
quite appreciable near the leading edge and it becomes 
negligible for Peclet numbers in excess of 100. Prakash 
[15] considered the viscous dissipation term in the 
energy equation and obtained an analytical solution 
for the unsteady temperature distribution, resulting 
from a step change in wall temperature, in a fully 
developed laminar flow inside a circular pipe. Sparrow 
and De Farias [16] presented results for the unsteady 
laminar heat transfer in a flat duct with periodically 
varying inlet fluid temperature and wall temperature. 
Again the slug-flow assumption was made. Approxi- 
mate analytical solutions were obtained and com- 
pared with finite-difference solutions by Cotta and 
Ozisik [ 171 for the case of transient forced convection 
in fully developed laminar flow inside circular ducts 
and parallel-plate channels subjected to timewise vari- 
ation of wall temperature. 

A finite-integral-transform technique was used [ 181 
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to obtain a solution of the case of fully developed flow 
between two parallel-plates with time varying inlet 
temperature. Lin and Shih [19] considered unsteady 
heat tansfer for fully developed laminar flow of power 
law non-Newtonian fluids in the thermal entrance 
region of pipes and plate slits, with viscous dissipation 
taken into consideration. A numerical solution to the 
energy equation with the axial conduction term taken 
into consideration was presented by Chen et al. [20] 
for the hydrodynamically fully developed flow in a 
pipe with a step change in wall temperature or heat 
flux. 

To the authors’ knowledge, no studies are available 
in the literature dealing with transient laminar forced 
convection in annular passages. However, of practical 
importance to the case under consideration is the 
problem of steady (with respect to time) flow in the 
entrance region of concentric annuli with simul- 
taneously developing hydrodynamic and thermal 
boundary layers. The solution to the transient prob- 
lem should asymptotically approach the steady-prob- 
lem solution and hence the latter can provide a check 
on the transient solutions to be obtained. Such steady 
solutions were previously obtained by Coney and El- 
Shaarawi [21] and El-Shaarawi and Sarhan [22]. 

The lack of either theoretical or experimental data 
concerning the problem of unsteady laminar forced 
convection in annular passages, and the practical 
importance of this problem in the fields of nuclear 
reactors and double-pipe heat exchangers, motivated 
the present work. The present paper deals with the 
problem of transient laminar forced convection in the 
entry region of a concentric annulus. Heating starts at 
the entrance cross-section and thus the hydrodynamic 
and thermal boundary layers are developing, with 
respect to the space coordinates (r and z), simul- 
taneously. However, the velocity profiles are taken 
to be steady with rspeect to time. Thermal transients 
are caused by one of the following four conditions : 

(1) case (I) : step change in the inner wall tem- 
perature while the outer wall is kept adiabatic (q = 0) ; 

(2) case (IE): simultaneous step change in tem- 
perature at both the inner wall and the entrance cross- 
section, while the outer wall is kept adiabatic ; 

(3) case (0) : step change in the outer wall tem- 
perature while the inner wall is kept adiabatic ; 

(4) case (OE) : simultaneous step change in tem- 
perature at both the outer wall and the entrance cross- 
section while the inner wall is kept adiabatic. 

GOVERNING EQUATIONS 

Figure 1 depicits the geometry, coordinate system, 
and the finite-difference grid used. The fluid has con- 
stant physical properties and enters the annular pass- 
age with a uniform velocity distribution, uO, which is 
unchanging in time. Prior to the start of the time- 
varying heating (or cooling) process, the fluid may 

either be in a thermal steady-state as a result of some 
steady heating process, or alternately, the fluid and 
the annulus walls may be at the same uniform tem- 
perature, To. The transient forced convection process 
starts by imposing (at t > 0) one of the previously 
mentioned four initial thermal conditions. 

Assuming axisymmeric, laminar, boundary-layer 
flow of a Newtonian fluid, with no internal heat gen- 
eration, neglecting viscous dissipation (2p(du/az) ‘) 
and the axial conduction of heat (rc(8*T/8Z2)), and 
using the dimensionless parameters given in the 
nomenclature, the equations of continuity, motion 
and energy reduce to the following non-dimensional 
equations, respectively 

(1) 

It is noteworthy that the radial momentum equa- 
tion has been eliminated due to the boundary-layer 
simplifications. However, it is possible, under the 
linearized numerical scheme of Bodoia and Osterle 
[23], to compensate for the lack of such an equa- 
tion by using the following dimensionless integral 
continuity equation 

S’ RUdR = (I-N*)/2. 
N 

Since the physical properties of the fluid are 
assumed constant, the equations of conservation of 
mass and momentum can be solved to determine the 
axial and radial velocity profiles (U and V), after 
which the energy equation can be solved using the 
previously obtained velocities. In the four cases con- 
sidered, the initial values (at r = 0) of U, V, and Q at 
the boundaries are as follows : 

at Z = 0 and N < R < 1: 

U=l and V=O: 

forZ>OandR=NorR=l: 

u= v=e=o. 

The boundary conditions related to 
are, for the four cases, as follows : 

at Z = 0 and N < R < 1: 

(54 

Uand Vforr > 0 

U=l and V=O; 

forZ>OandR=NorR= 1: 

u= v=o. (5b) 

For T > 0, the thermal boundary conditions for the 
four cases considered are 
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FIG. I. Model of analysis: (a) two dimensional channel; (b) finite-difference network in R-Z plane; 
(c) mesh network for energy equation. 

case (I) case (IE) 

AtZ=OandN<R< 1: 0=0 B=l 

forZ > Oand R = N: L9=1 O=l 

io a0 
forZ>OandR= 1: -=O -_=O 

8R l?R 

case (0) case (OE) 

AtZ=OandN< R< 1: B=O %=I 

a0 
forZ>OandR=N: -=O g=O 

aR 

forZ>OandR= 1: 8=1 B=l. (SC) 

NUMERICAL METHOD OF SOLUTION 

In the present work, there are three independent 
variables ; R, Z, and z. A three-dimensional parallel- 
piped grid in R, Z, and z has to be imposed on half 
of the annular flow field ; only half of the channel is 
needed due to symmetry about the Z-axis. Thus, the 
rectangular grid shown in Fig. l(b) is superimposed 
on half of the annular flow field in the R-Z plane; 
this grid represents the solution domain for z = 0. For 
other values of t, there are other identical parallel 

grids, i.e. the non-dimensional time (5) is simulated as 
a third coordinate normal to R-Z plane as clarified in 

Fig. l(c). Mesh points are numbered consecutively 
from an arbitrary origin with the i progressing in the 
radial direction, with i = 1 (at the inner wall), 2,3, , 
and n+ 1 (at the outer wall), the j progressing in 
the axial direction, withj = 1 (at inlet cross-section), 
2,3,. , and m + 1 (at the final arbitrary chosen cross- 
section), and the k progressing in the imaginary time 
direction, with k = 1 (the initial state), 2,3,. _, and 
kf 1 (at the final state). The value of m (number of 
steps in axial direction) is chosen such that hydro- 

dynamic full development is ensured and the value 
of k is chosen such that steady-state conditions are 
achieved. Thus in this domain, R, = N (inner wall), 
R “+I = 1 (outer wall), Z, = 0 (channel entrance), 
Z m+ I = L (channel length or height), 5, = 0 (initial 
state), TV+, should be >t,, (the steady-state time). 
Therefore, the independent variables are designated 
as point functions by R, = N+(i- l)AR, Z, = 
(j- l)AZ, and zk = (k- 1)Az. The dependent vari- 
ables are designated as point functions with sub- 
scripts (ij, k). 

As previously stated, the velocity components U 
and V, due to the assumption of constant physical 



Transient forced convection in the entrance region of concentric annuli 3339 

properties and also the conditions imposed, are inde- 
pendent of time r and temperature 8. Thus, the finite- 
difference equations corresponding to the continuity 
and momentum equations (equations (1) and (2)) 
can be constructed in the R-Z plane with the two 
dependent variables U and V having two subscripts 
only (i and j). Moreover, due to the boundary-layer 
assumptions, the pressure (P) is a function of Z only. 
Hence, P can have only one subscript (j). On the 
other hand, the three-dimensional grid depicted in 
Fig. 1 (c) is applicable to the energy equation since the 
temperature is a three-dimensional function of R, Z 
and r. 

By an extension of the work of Bodoia and Osterle 
[23] equations (1), (2) and (4) can be written in the 
following finite-difference forms 

V I+ I.,+ I - vz,j+ I + vt+ I,,+ I + vi,,+ 1 
AR 2[N+ (i- $)AR] 

u 
+ I+ I,/+ I + ‘i,,+ I - ui+ I,/- ui,j = o 

2AZ 
(6) 

Ii 
VL, 

l+l./+I-“~~l,,+, +u u!.i+I-“i., 
2AR r., AZ 

’ -p,+l UI+I,,+1-2U~,j+l+U~-~,,+~ =A+ 
AZ (AR)* 

1 U 
+ 

N+ (i- l)AR 
t+I,,+I-“i-I,j+I =. (7) 

2AR 

2AR i U,,,[N+(i- l)AR] = (1 -N*). (8) 
,=2 

Considering the mesh network shown in Fig. l(c), 
equation (3) can be written in the following finite- 
difference form 

tI 
+ V!., 

z+ I,,+l.k+ I -@i- I,,+ 1.k+ I 
2AR 

_ l 

--[ 

@t+ I.j+ I.k+ I -2ei,~+ I,k+ I +eL- I,j+ I.k+ I 
Pr GW2 

1 8 

+ [N+ (i- l)AR] 
I+I,l+I,k+I-e~-,,,+,,k+, . (9) 

2AR 1 
In Fig. l(c), the circled point is the grid point under 
consideration and the crossed points represent those 
grid points involved in the difference equation (9). 
Also, it is shown in ref. [24] that the above finite- 
difference equations are consistent representations of 
the boundary layer equations (l)-(3) and are stable 
as long as the downstream axial velocity (U) is non- 
negative, i.e. there is no flow reversal within the 
domain of the solution. 

The method of solving (7) and (8) to get U and P 
at each cross-section, after which (6) is used for the 
evaluation of Vat the same cross-section, is discussed 
in ref. [23]. Now, having obtained values of U and V 

at a cross-section (j), equation (8) associated with the 
conditions (5) can be used to obtain the temperature 
values at r + AZ for this particular cross-section. It is 
important to mention that, in equation (8) 0s with 
subscript k are known and those with subscript k + 1 
are unknown. At each cross-section, n simultaneous 
linear equations have to be solved to get n temperature 
unknowns. The matrix of coefficients is tridiagonal 
and hence the Thomas method is preferred to get the 
solution. The same procedure is repeated for other 
values of j (other cross-sections) to obtain the tem- 
perature field all over the entire annulus length at 
r + AZ. Repeating this procedure, one can advance in 
time and obtain the transient temperature behaviour 
until steady-state conditions are practically achieved. 

RESULTS AND DISCUSSION 

The computations were carried out for only one 
value of Prandtl number, namely, 0.7, in an annulus 
of N = 0.5. Due to space limitations only a sample of 
the results will be presented here and detailed results 
may be found in ref. [24]. 

Figures 2-7 present examples of the developing 
unsteady temperature profiles at some chosen cross- 
sections (values of Z). Figure 2 shows the temperature 
profile for case (I). Hence the dimensionless tem- 
perature has a maximum value of unity at the inner 
isothermal wall and decreases gradually to reach its 
minimum value at the outer insulated wall. For case 
(0) Fig. 3 shows that the maximum temperature is 
at the outer isothermal wall. In Figs. 4-7, which are 
for cases (IE) and (OE), the temperature is maximum 
at the heated wall, after which it decreases and 
becomes nearly flat (has a constant value) within the 
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R 

FIG. 2. Dimensionless temperature vs dimensionless radius 
for various values of T, Z = 0.003, case (I), N = 0.5. 
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FIG. 3. Dimensionless temperature vs dimensionless radius FIG. 5. Dimensionless temperature vs dimensionless radius 
for various values of r, Z = 0.0015, case (0). N = 0.5. for various values of T, Z = 0.005, case (IE), N = 0.5. 

core region, then it decreases again gradually and 
reaches its minimum value at the insulated boundary. 
In Figs. 2-7, it can be seen that, for a chosen value of 
Z (cross-section), and at a given value of R (except 
R = R,), the temperature increases as z increases. 

In Figs. 5 and 7, an interesting phenomenon for 
cases (IE) and (OE), which is the existence of dips 
near the heated wall, may be observed. This may be 
attributed to the fact that the axial velocity component 
is much smaller in the dip region than in the core 
region. Hence, the axially convected heat from the 
entrance cross-section, at which a step change in tem- 

7=6.0x104 
,\\ 

0.6 

0; 0.6 0.7 0.8 0.9 1.0 

a 
FIG. 4. Dimensionless temperature vs dimensionless radius 

for various values oft, Z = 0.0005, case (IE), N = 0.5. 
FIG. 6. Dimensionless temperature vs dimensionless radius 

for various values of r, Z = 0.0005, ease (OE), N = 0.5. 
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perature occurs in both cases (IE) and (OE), to the 
dip region is smaller than that to the core region. This 
makes the temperature in the core region higher than 
that in the region close to the heated wall. 

For a given r, Figs. 8 and 9 clarify the effect of the 
axial distance Z on the temperature profiles for cases 
(I) and (OE) respectively. Again, Fig. 8 shows that, 
for case (I), the closer the position to the heated wall 
the higher the temperature. Similarly, Fig. 9 shows 
that the highest temperature is always at the heated 
wall but the core fluid may have a higher temperature 
than some fluid near the heated boundary. Moreover, 
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R 

FIG. 7. Dimensionless temperature vs dimensionless radius 
for various values of r, Z = 0.001, case (OE), N = 0.5. 

for a given time r, the temperature in cases (I) and 
(0), is anticipated to increase as the flow moves away 
from the annulus entrance (i.e. 2 increases). This is 
clarified in Fig. 8 for case (I). On the other hand, in 
cases (IE) and (OE), as 2 increases the fluid moves 
away from the source of heat due to the temperature 
pulse at the entrance cross-section. Hence, it is 
expected that in cases (IE) and (OE) the temperature, 
for a given time, would decrease as 2 increases. This 
is clarified in Fig. 9 for case (OE). 

Engineers are not frequently concerned with the 
details of the fluid temperature profile but only with 

1 .o 
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0.55 0.60 0.65 
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FIG. 8. Dimensionless temperature vs dimensionless radius 
for various values of Z, r = 10-3, case (I), N = 0.5. 
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FIG. 9. Dimensionless temperature vs dimensionless radius 
for various values of Z, r = 2 x lo-‘, case (OE), N = 0.5. 

the mixing cup temperature. Knowing the mixing cup 
temperature, T,,,, the total heat absorbed by the fluid 
(qJ from the entrance cross-section until any distance 
from the entrance (Z) can be calculated. Therefore, 
Figs. 10 and 11 present the dimensionless mixing cup 
temperature (0,) against the dimensionless axial dis- 
tance (Z) with the time r as a parameter for the four 
cases considered. Figure 10, which is for cases (I) and 
(0), shows that, for a given value of Z and a given 
value of r, 0, in case (0) is greater than that in case 
(I). This can be attributed to the larger heat transfer 
area in case (0) than that in case (I) and hence the 
amount of heat absorbed by the fluid in case (0) is 
more than that in case (I). 

Another important observation from Fig. 10 is that, 
at small values of 7 (early times), the mixing cup 
temperature reaches a maximum near the entrance 
(small values of Z). This phenomenon can be attri- 
buted as follows. It is known that at early times, the 
diffusion term (on the RHS of equation (3)) is the 
dominant term for the heat transfer process. In other 
words, at early times (7 < Z/U,,,) convection (pre- 
sented by the terms containing velocity components 
on the LHS of equation (3)) is small compared with 
diffusion and the problem is very much similar to the 
conduction case. Also, the hydrodynamic boundary 
layer is known to cause the greatest resistance to the 
radial diffusion of heat, but its thickness is small near 
the entrance. Moreover, the radial velocity com- 
ponent V, which is responsible for transporting fluid 
from regions close to the heated boundary to the core 
region, has large values near the entrance and decays 
as the flow moves away from the entrance. Thus, near 
the entrance and at early times, there is high radial 
diffusion of heat beside high radial transportation 
of heat. These two simultaneous effects result in the 
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FIG. 10. 

- Case (0) 
--- Case (I) 

‘TX 103=15 

30 60 90 120 150 160 210 240 270 300 

zx 104 

Mixing cup temperature vs axial distance for various values of 7, cases (I) and (0), 

maximization of the mixing cup temperature near the 
entrance at early times, as shown in Fig. 10. 

For cases (IE) and (OE), the behaviour of the mix- 
ing cup temperature is quite different, as shown in 
Fig. 11. Here, 0, decreases monotonically with Z for 
all values of r since the flow moves away from the 
heat pulse at the entrance. Moreover, at the same axial 

distance (Z) and same time (r), 0, for case (OE) is 
higher than that for case (IE). Again, this is because 
the heat transfer area in the former case is higher than 
that in the latter. 

Another parameter of engineering importance is the 
adiabatic wall temperature (e,,). Figures 12 and 13 
give the variation of Bad with z for some chosen values 
of the dimensionless axial distance (Z) for the four 
cases investigated, i.e. cases (I), (0), (IE), and (OE). 
As can be seen from Fig. 12, for cases (I) and (0), B,,, 
increases with Z and for the same axial position and 
time, 8,, in case (0) is greater than that in case (I). 
On the other hand, Fig. 13 shows that, for cases (IE) 

N = 0.5. 

and (OE), the value of Bad, at any value of 7, decreases 
as the fluid moves away from the entrance (i.e. Z 
increases). Again, 8,, in case (OE) is greater, for the 

same Z and 7, than for case (IE). 
To check the adequacy of the present results, a 

computer run was made with a value of N very close 
to unity (to approach the parallel plate channel ; 

N = 0.99) and with a step temperature change at both 
walls. The obtained temperature profiles are presented 
and compared with those of Siegel and Sparrow [9] 
in Fig. 14 for the single value of Z at which Siegel 
and Sparrow [9] presented their results. Using a flat 
velocity profile at the entrance in the present work, 
the obtained temperature profiles are generally higher 
than those of Siegel and Sparrow [4], as shown in 
Fig. 14. This is expected since Siegel and Sparrow [9] 
assumed a fully developed flow while in the present 
work the flow velocity is developing and hence 
enhancing the convection heat transfer process. How- 
ever, making another special computer run, with a 

- Case (OE) 
- - - Case (IE) 

1.0 

%l 
0.6 

0.4 

5 IO 15 20 25 

zx 104 

FIG. 11. Mixing cup temperature vs axial distance for various values of T, cases (IE) and (OE), N = 0.5. 
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FIG. 12. Adiabatic wall temperature vs time for various FIG. 14. Comparison of the present temperature profiles with 
values of Z, cases (I) and (0), N = 0.5. those of Siegel and Sparrow [9], N = 0.99, Z = 2.8 x IO- ‘. 

fully developed velocity profile right from the annulus 

entrance, the difference between the obtained results 
and those of Siegel and Sparrow [9] becomes un- 
remarkable and the obtained temperature profiles 
fell on top of those of Siegel and Sparrow. 

The same parallel plate channel problem was solved 
by Cotta and Ozisik [17] and this provides another 
check. Table I compares the obtained variation of the 
dimensionless wall heat flux with that of Cotta and 
Ozisik [ 171. As can be seen from this table the present 
results (for N = 0.99) are in very good agreement with 

those of ref. [IT] for values of T < 0.05 ; the maximum 

percentage difference is about 1.2%. However, for 
large value of T (namely 0.1) the percentage difference 
is about 18.5%, which is relatively high. Such a large 
difference (at high value of T) is due to the fact that 
for high values of 7(7 B Z/U,,,) the flow is far from 
the conduction region in which the presented results 
of Cotta and Ozisik are valid. 

Finally, at large values of 7, the present results have 

always been found to equal the steady-state results 
which were previously obtained in refs. [2l, 221. This 
provided another check on the present results. 

1.0 - 

- Case (IE) 
--- Case (OE) CONCLUSIONS 

A finite-difference scheme has been presented to 

solve the problem of transient laminar forced con- 
vection in the entry region of an annulus with simul- 
taneously developing hydrodynamic and thermal 
boundary layers. Numerical results have been pre- 
sented for four different initial thermal conditions. 
These results include the variation of the mixing cup 
temperature with axial distance from the entrance for 
various values of time. Generally. thermal responses 

Table 1. Comparison of the present results with those of 
Cotta and Ozisik [ 171 

Q 

25 50 75 100 125 150 175 

TX 10s 

Flci. 13. Adiabatic wall temperature vs time for various 
values of Z, cases (IE) and (OE), N = 0.5. 

t Present work Cotta and Ozisik [17] 

0.005 7.970 1.919 
0.010 5.660 5.642 
0.030 3.215 3.251 
0.050 2.250 2.532 
0.100 1.505 1.784 
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associated with heating the outer boundary are more 
pronounced than those associated with heating the 
inner boundary. 

5. 

6. 

7, 

8. 

9. 

IO. 
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